

Acknowledgments:

DOE NETL: William W. Aljoe

DOE Award Number: DE-FC26-03NT41723

Mercury Transport and Deposition in Ohio River Valley Region: Measurements at a Rural Super Site in Athens, Ohio

Kevin Crist Director Air Quality Center

Partners

Advanced Technology Systems

Argonne

Pioneering Science and Technology **ARGONNE** NATIONAL LABORATORY

Atmospheric and Environmental Research

Consol Energy

Ohio EPA

Ohio University

Potential Toxic Exposure in Humans (major pathways are in red)

Source: Leonard Levin, Valuing Externalities Workshop,

Atmospheric Chemistry of Mercury

Source: Leonard Levin, Valuing Externalities Workshop,
Ohio University – Consortium for Energy Economics and the Environment

Project Objectives

Quantitatively evaluate the emission, transport and deposition of mercury, arsenic and fine particulate matter in the Ohio River Valley region

- Ambient Monitoring
- Regional-Scale Modeling Analysis

Anticipated Benefits

Provide critical information for the development of relevant and cost effective control strategies

Ohio River Valley

Contribution of the Global Background to Mercury Deposition (%)

Ohio University – Consortium for Energy Economics and the Environment

Measurements

Species of Concern	<u>Observed</u>	<u>Resolution</u>
Mercury	Hg ⁰ , RGM, Hg _p	120 min
Wet Deposition	Total Mercury	1 week
Gases	SO ₂ , NO _x , CO, O ₃	1 min
	TEOM (PM _{2.5})	10 min
Fine Particulate	Federal Reference Method	3 days
Met (approx 100m)	WS, WD	1 min
Met (10 m)	WS, WD, Temp, BP, RH, Precip.	1 min
Ammonia	NH ₃ , HNO ₃ , SO ₂ , SO4 ²⁻ , NO ³⁻ , NH ⁴⁺ , PM _{2.5}	6 days

Ohio University – Consortium for Energy Economics and the Environment

Mercury

Speciation

- Elemental mercury (Hg⁰): long range transport, stable in the atmosphere, ng/m³
- Reactive Gaseous Mercury (RGM/Hg²+):
 Local deposition, soluble in water, pg/m³
- Particulate mercury (Hg_p): Local deposition, associate with fine PM, pg/m³

September 2004 Gas & RGM Trends

Ohio University - Consortium for Energy Economics and the Environment

Potential Source Contribution Function (PSCF)

- PSCF has been used for air pollution source apportionment and source-receptor relationship studies.
- PSCF_{ij} is the conditional probability that an air parcel that passed through the *ij*th cell has a concentration higher than the threshold criterion upon arrival at the monitoring site

$$PSCF_{ij} = \frac{m_{ij}}{n_{ij}}$$

 n_{ij} : total number of end points that fall in the ijth cell

 m_{ij} : number of end points that exceeded the threshold criterion

(in this study, average concentration of RGM was used for the threshold criterion)

5-day Backward Trajectory

Possible Source region for RGM. Measurements from July 27 2004 ~ March 28, 2005. Using 24 hr back-trajectories

Athens US States Surface from Final pscf rgm 1 hr, 02.txt 0 - 0.0680.068 - 0 136 0.136 - 0.205 0.205 - 0.2730.273 - 0.3410.341 - 0.409 0.409 - 0.477 0.477 - 0.5460.546 - 0.614 No Data **ATHENS**

Ohio University – Consortium for Energine Conomics and the Environment

(5-hour back trajectory)

Nov of 2004

11/22/04

Ohio University – Consortium for Energy Economics and the Environment

Wet Deposition Sampler

- Mercury Deposition Network (MDN)
- Associated with both rain and snow events
- Sample collection every week
- Analyzed for total mercury content

Total Mercury Wet Deposition, 2003

